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Abstract We describe a new construction algorithm for the recursive generation of all
non-isomorphic IPR fullerenes. Unlike previous algorithms, the new algorithm stays
entirely within the class of IPR fullerenes, that is: every IPR fullerene is constructed by
expanding a smaller IPR fullerene unless it belongs to a limited class of irreducible IPR
fullerenes that can easily be made separately. The class of irreducible IPR fullerenes
consists of 36 fullerenes with up to 112 vertices and 4 infinite families of nanotube
fullerenes. Our implementation of this algorithm is faster than other generators for
IPR fullerenes and we used it to compute all IPR fullerenes up to 400 vertices.

Keywords IPR fullerene ·Nanotube cap · Fullerene patch · Recursive construction ·
Computation

1 Introduction

A fullerene is a cubic plane graph where all faces are pentagons or hexagons. Euler’s
formula implies that a fullerene with n vertices contains exactly 12 pentagons and
n/2 − 10 hexagons.
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The dual of a fullerene is the plane graph obtained by exchanging the roles of
vertices and faces: the vertex set of the dual graph is the set of faces of the original
graph and two vertices in the dual graph are adjacent if and only if the two faces
share an edge in the original graph. The rotational order around the vertices in the
embedding of the dual fullerene follows the rotational order of the faces.

The dual of a fullerene with n vertices is a triangulation (i.e. a plane graph where
every face is a triangle) which contains 12 vertices with degree 5 and n/2−10 vertices
with degree 6.

In this article we will mostly use the dual representation of a fullerene, which we
call a dual fullerene, as this was the most convenient representation for our proofs and
implementations.

The discovery in 1985 of the first fullerene molecule, the C60 “buckyball”, won the
Nobel Prize for three of its discoverers [19]. Since then many algorithms have been
developed to exhaustively list (mathematical models of) fullerene isomers.

The first approach was the spiral algorithm of Manolopoulos et al. in 1991 [22].
The spiral algorithm was relatively inefficient and also incomplete in the sense that
not every fullerene isomer could be generated with it. It was later modified to make it
complete, but the resulting algorithm was not efficient [21].

An algorithm using folding nets was proposed by Yoshida and Osawa [27] in 1995,
but its completeness remains a difficult open problem. Liu et al. [20] and Sah [24] give
other algorithms, but they are also of limited efficiency.

The first complete and efficient generator for fullerenes was developed by
Brinkmann and Dress [7] in 1998 and is called fullgen. This algorithm stiches patches
together which are bounded by zigzag paths.

In 2012 Brinkmann, Goedgebeur and McKay [9] developed a new generator for all
fullerenes called buckygen using infinite families of patch replacement operations [17].
Buckygen was significantly faster than fullgen and contradictory results with fullgen
led to the detection of a non-algorithmic programming error in fullgen. Due to this
error some fullerenes were missed starting from 136 vertices. In the meantime this
bug has already been fixed and now the results of both generators are in complete
agreement. The generator of Brinkmann, Goedgebeur and McKay was also used to
prove that the smallest counterexample to the spiral conjecture has 380 vertices [10].

In this article we define a new construction algorithm for the recursive generation
of all non-isomorphic Isolated Pentagon Rule (IPR) fullerenes based on the patch
replacement operations ofHasheminezhad, Fleischner andMcKay [17]. IPR fullerenes
are fullerenes where no two pentagons share an edge. These fullerenes are especially
interesting as they tend to be chemically more stable and thus they are more likely to
occur in nature [1,26].

The face-distance between twopentagons is the distance between the corresponding
vertices of degree 5 in the dual graph. So in IPR fullerenes the minimum face-distance
between any two pentagons is at least two. In [15] we determined a formula for the
number of vertices of the smallest fullerenes with a given minimum face-distance
between any two pentagons.

In Sect. 2we present the construction operations. In Sect. 3we introduce the concept
of a cluster and determine the irreducible clusters. This allows us to prove that the
class of irreducible IPR fullerenes consists of 36 fullerenes with up to 112 vertices and

123



1704 J Math Chem (2015) 53:1702–1724

4 infinite families of nanotube fullerenes. Section 4 describes the generation algorithm
and how we make sure that no isomorphic fullerenes are output.

Finally, in Sect. 5 we compare our implementation of this recursive generation
algorithm to other generators for IPR fullerenes.

2 Construction operations

A patch replacement is a replacement of a connected fragment of a fullerene with a
different fragment having identical boundary. If the new fragment is larger than the
old, we call the operation an expansion, and if the new is smaller than the old, we call
it a reduction.

Since the boundary determines the number of faces in a patch if it contains
fewer than two pentagons [11], and pentagons in fullerenes can be arbitrarily far
apart, an infinite number of different patch expansions is required to construct all
fullerenes.

Hasheminezhad et al. [17] used two infinite families of expansions to construct all
fullerenes (so also non-IPR fullerenes): Li and Bi, j . These expansions are sketched in
Fig. 1. The lengths of the paths between the pentagons may vary and for operation Li

the mirror image must also be considered. All faces drawn completely in the figure or
labelled fk or gk have to be distinct. The faces labelled fk or gk can be either pentagons
or hexagons, but when we refer to the pentagons of the operation, we always mean
the two faces drawn as pentagons.

In Fig. 2 the L and B expansions of Fig. 1 are shown in dual representation. We
will refer to vertices which have degree k ∈ {5, 6} in the dual representation of a
fullerene as k-vertices. The solid white vertices in the figure are 5-vertices, the solid
black vertices are 6-vertices and the dashed vertices can be either. The two 5-vertices
which are involved in the reduction and the vertices which must be 6-vertices in the
reduction are called the active vertices of the reduction.

Hasheminezhad et al. [17] have proven that every fullerene except C28(Td) and
type-(5,0) nanotube fullerenes, can be reduced to a smaller fullerene by applying an L
or B reduction. This means that every fullerene isomer, except C28(Td) and type-(5,0)
nanotube fullerenes can be constructed by recursively applying expansions of type L
and B to C20.

The program buckygen [9] by Brinkmann, Goedgebeur andMcKay (which uses the
operations of Hasheminezhad et al.), is a generator for all fullerenes, but it also has an
option to output only IPR fullerenes by using a filter and some look-aheads. However,
many IPR fullerenes are constructed by this generator by applying an expansion to
a non-IPR fullerene. So in order to generate all IPR fullerenes with n vertices, most
non-IPR fullerenes with less than n vertices also need to be constructed by the program
(see [9] for details).

The construction algorithm which is described in this paper also uses the construc-
tion operations of Hasheminezhad et al. and can generate all IPR fullerenes, but stays
entirely within the class of IPR fullerenes, that is: IPR fullerenes are constructed from
smaller IPR fullerenes. We therefore only apply expansion operations to dual IPR
fullerenes which lead to dual IPR fullerenes. We also refer to these operations as IPR
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Fig. 1 The L and B expansions for fullerenes

construction operations. So, for example, we never apply expansions of type L0 or
B0,0 from Fig. 2 as they result in adjacent 5-vertices.

Figure 3 shows some examples of IPR expansions. The solid white vertices are
5-vertices, the solid black vertices are 6-vertices and the dashed ones can be either.
If any of the black vertices in the initial patch of the expansion would be a 5-vertex,
the expanded dual fullerene would not be IPR. The other IPR expansions are defined
similarly.

An IPR fullerene which cannot be reduced to a smaller IPR fullerene by applying
one of the reduction operations is called an irreducible IPR fullerene. In Sect. 3 we
prove that the class of irreducible IPR fullerenes consists of 36 fullerenes with up to
112 vertices and 4 infinite families of nanotube fullerenes.

3 Irreducible IPR fullerenes

3.1 Definitions and preliminaries

In this section we will classify the irreducible dual IPR fullerenes using the concept
of a cluster.
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Fig. 2 The L and B expansions in dual representation

A fullerene patch is a connected subgraph of a fullerene where all faces except one
exterior face are also faces in the fullerene. Furthermore all boundary vertices have
degree 2 or 3 and all non-boundary vertices have degree 3. In the remainder of this
article we will abbreviate “fullerene patch” as “patch”. The boundary of a patch is
formed by the vertices and edges which are on the unique unbounded face, i.e. the
outer face.

Definition 1 (Cluster) A k-cluster C is a plane graph where all faces except one
exterior face are triangles and that has the following properties:

– All vertices of C have degree at most 6.
– Vertices which are not on the boundary of C have degree 5 or 6.
– C contains exactly k vertices with degree 5 which are not on the boundary.
– No two vertices with degree 5 which are not on the boundary are adjacent.
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Fig. 3 Examples of expansions which can lead to dual IPR fullerenes

– Vertices with degree 5 which are not on the boundary are at distance at least 2
from the boundary.

– Between any two vertices a, b of C which have degree 5 and which are not on the
boundary, there is a path P from a to b so that each edge on P contains exactly
one vertex with degree 5 which is not in the boundary.

– No subgraph of C is a k-cluster.

A k-cluster for which k is not specified is sometimes just called a cluster. We also
assign a colour to the vertices of a cluster: vertices which are on the boundary of the
cluster have colour 6 and the colour of the vertices which are not on the boundary is
equal to their degree. We also call a vertex with colour 5 a 5-vertex and a vertex with
colour 6 a 6-vertex.

We say that a dual fullerene G contains a cluster C if and only if C is a subgraph
of G and every vertex on the boundary of C has degree 6 in G.

Definition 2 (Locally reducible cluster) A cluster is locally reducible if there exists
an L or B-reduction where the active vertices of the reduction are part of the cluster
such that the reduced cluster does not contain any adjacent 5-vertices.

Note that the reduced cluster is not necessarily a cluster. Clusters which are not
locally reducible are called irreducible.

Lemmas 3 and 4 are useful for the proof of Lemma 5.

Lemma 3 Consider a dual fullerene G and a reduction. If v,w ∈ V (G) are at
distance d in G and neither v nor w are active vertices of the reduction, then v and
w are at distance at least d − ⌊ d+1

3

⌋
in the reduced dual fullerene.

Proof Let P be a shortest path from v tow after the reduction, and let d ′ be its length.
P may use the non-boundary edges of the new (smaller) patch, but not more than⌈ d ′+1

2

⌉
of them, since otherwise two would be adjacent and P could be shortened.

Each such non-boundary edge can be replaced by two edges of the old (larger) patch
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to form a walk from v to w of length d ≤ d ′ + ⌈ d ′+1
2

⌉
before the reduction. This

inequality is equivalent to the one required. ��
Lemma 4 Consider a dual fullerene G and a reduction. If v,w ∈ V (G) are at
distance d in G and v is a 6-vertex which becomes a 5-vertex after reduction and w

is not an active vertex of the reduction, then v and w are at distance at least d − ⌊ d
3

⌋

in the reduced dual fullerene.

Proof The proof is the same as for the previous lemma, noting that v is not incident
with a non-boundary edge of the (smaller) patch after the reduction. ��
Lemma 5 A dual IPR fullerene which contains a locally reducible cluster is reducible
to a smaller dual IPR fullerene.

Proof Consider a dual IPR fullerene G which contains a locally reducible cluster
C . Let G ′ be the dual fullerene obtained by applying a reduction from C . The only
possibility such that G ′ would not be IPR is that a 5-vertex which is part of C or a
6-vertex ofC which becomes a 5-vertex after reductionwould be adjacent to a 5-vertex
which is not part of the cluster.

Let v be a 5-vertex of G which is not part of C . It follows from Definition 1 that
5-vertices which are not part of the cluster, are at distance at least 3 from 5-vertices
which are part of the cluster.

Letw be a 5-vertex which is in C and which is not an active vertex of the reduction.
It follows from Lemma 3 that v and w are at distance at least 2 in G ′.

Now let w be a 6-vertex which becomes a 5-vertex after reduction. Since w is
adjacent to a 5-vertex in C , it follows from Definition 1 that v and w are at distance at
least 2 in G. Thus it follows from Lemma 4 that v and w are at distance at least 2 in
G ′.

Thus G ′ does not contain any adjacent 5-vertices. ��
Note that if a dual fullerene contains multiple clusters, they are distinct in the sense

that for every two clusters in a dual fullerene the set of 5-vertices is disjoint, but they
may have some 6-vertices in common.

3.2 Reducibility of k-clusters (1 ≤ k ≤ 6)

Lemma 6 All dual IPR fullerenes which contain only 1-clusters are reducible to a
smaller dual IPR fullerene.

Proof In [17] it was proven that in a dual IPR fullerene, at least one shortest path
between any two 5-vertices forms a valid L or B-reduction (not necessarily to a dual
IPR fullerene). Each cluster contains one 5-vertex, thus all vertices at distance at most
2 from each 5-vertex are 6-vertices.

Consider a dual IPR fullerene G which contains only 1-clusters. Let G ′ be the graph
obtained by applying the shortest reduction between two 5-vertices a, b ∈ V (G). Let
a′ (respectively b′) be the 6-vertex in G which is adjacent to a (respectively b) which
is transformed into a 5-vertex by the reduction. It follows from Lemma 3 that the
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distance in G ′ between 5-vertices which were not involved in the reduction is at least
2. It follows from Lemma 4 that the distance in G ′ between a′ (or b′) and a 5-vertex
which is not modified by the reduction is at least 2.

Suppose a and b are at distance d in G. Note that d is at least 3 since a and b lie in
different clusters. Since we performed the shortest reduction between a and b, a′ and
b′ are at distance at least d − 2 in G ′. If d > 3 there is not a problem. If d = 3, a′ and
b′ could be at distance 1 in G ′. However this would imply that G ′ has a non-trivial
cyclic 5-edge-cut and is thus a type-(5,0) nanotube (see [14] for details). But this is
not possible since G is IPR. Thus G ′ is a dual IPR fullerene. ��

Using an algorithm that generates all k-clusters for given k (see [14] for details),
we tested all k-clusters for local reducibility. We obtained the following results:

Observation 7 All k-clusters with k ∈ {2, 3, 5} are locally reducible.

Applying Lemma 5 to Observation 7 gives us the following corollary:

Corollary 8 Every dual IPR fullerene which contains a k-cluster (k ∈ {2, 3, 5}) is
reducible to a smaller dual IPR fullerene.

Observation 9 There is exactly one 4-cluster which is not locally reducible.

This cluster is depicted in Fig. 4. The four 5-vertices are white and the other vertices
are 6-vertices. Every dual IPR fullerenewhich contains this cluster has a B2,2-reduction
to a smaller dual IPR fullerene unless the vertex x displayed in Fig. 5a is a 5-vertex.
The path of vertices which is going to be reduced by the B2,2-reduction is drawn with
dashed edges (assuming x is not a 5-vertex). In principle x can be a vertex which is
part of the cluster, but this is not a problem for the reduction. If x is a 5-vertex, there
is an L2-reduction which yields a dual IPR fullerene. This is shown in Fig. 5b. The
reduced dual fullerene is IPR since y is a 6-vertex, otherwise the dual fullerene before
reduction was not IPR. In principle y might be identical to one of the vertices which
is part of the cluster. This gives us the following corollary:

Corollary 10 Every dual IPR fullerene which contains a 4-cluster is reducible to a
smaller dual IPR fullerene.

Fig. 4 A locally irreducible
4-cluster
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x
(a)

x y
(b)

Fig. 5 A locally irreducible 4-cluster which has a B2,2-reduction (i.e. a) or an L2-reduction (i.e. b)

Fig. 6 A locally irreducible 6-cluster, called straight-cluster

Using the generator for k-clusters we also obtained the following result:

Observation 11 There are exactly six 6-clusters which are not locally reducible.

The first cluster is depicted in Fig. 6. The six 5-vertices are white and the other
vertices are 6-vertices. We call this a straight-cluster. Every dual IPR fullerene which
contains this cluster has an L6-reduction to a smaller dual IPR fullerene unless vertex
a or b displayed in Fig. 7a is a 5-vertex. This is shown in Fig. 7a. Also here a and b
may be part of the cluster. The path of vertices which is going to be reduced by the
L6-reduction is drawn with dashed edges. If a or b is a 5-vertex, there is an
L2-reduction which yields an IPR fullerene. This is shown in Fig. 7b where it is
assumed that a is a 5-vertex. The reduced dual fullerene is IPR since b is a 6-vertex,
otherwise the original dual fullerenewas not IPR. This gives us the following corollary:

Corollary 12 Every dual IPR fullerene which contains a straight-cluster is reducible
to a smaller IPR fullerene.
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a b

(a)
a b
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Fig. 7 Straight-cluster which has an L6-reduction (i.e. a) or an L2-reduction (i.e. b)

We call the cyclic sequence of the degrees of the vertices in the boundary of a patch
in clockwise or counterclockwise order the boundary sequence of a patch.

A cap is a fullerene patch which contains 6 pentagons and has a boundary sequence
of the form (23)l(32)m . Such a boundary is represented by the parameters (l,m). In
the literature, the vector (l,m) is also called the chiral vector (see [25]). When we
speak about caps in the remainder of this article, we more specifically mean caps with
a boundary sequence of the form (23)l(32)m . Not every patch of 6 pentagons can be
completed with hexagons to a patch with a boundary sequence of the form (23)l(32)m

(see [18] for an example), but the patches with 6 pentagons which we will discuss in
the remainder of this section all can be completed with hexagons to a boundary of the
form (23)l(32)m .

A cap with boundary parameters (m, l) is the mirror image of a cap with boundary
(l,m). A cap has a valid reduction if and only if its mirror image is also reducible.
Therefore we will assume that l ≥ m. It follows from the results of Brinkmann [3]
that a (fullerene) patch which contains 6 pentagons and which can be completed with
hexagons to a boundary of the form (23)l(32)m has unique boundary parameters, i.e.
it cannot be completed to a boundary with parameters (l ′,m′) where l ′ is different
from l or m′ is different from m.

The second irreducible 6-cluster is depicted in Fig. 8. We call this a distorted star-
cluster. By checking all possible reductions, it can be seen that for any dual IPR
fullerene which contains this cluster there are no reductions to a smaller dual IPR
fullerene where both 5-vertices of the reduction are in the distorted star-cluster.

Caps which contain the dual of a distorted star-cluster as a subgraph have boundary
parameters (6,5). Adding a ring of hexagons (or a ring of 6-vertices in the dual) to a
cap does not change the boundary parameters of the cap. Note that there are multiple
ways of gluing together two caps with boundary parameters (l, 0) to a fullerene. We
call an (l,m) ring of hexagons of an IPR fullerene removable if there is a way of
removing that ring of hexagons such that the reduced fullerene is still IPR.

We call a cap which contains at least one pentagon in its boundary a kernel. Clearly,
every cap has a kernel.

The program from Brinkmann et al. described in [13] generates all nanotube caps
which are non-isomorphic as infinite half-tubes. This is done byfirst generating all non-
isomorphic nanotube caps and then filtering out the ones which are non-isomorphic
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Fig. 8 A locally irreducible
6-cluster, called distorted
star-cluster

a

c

b

as infinite half-tubes. We modified the program so it outputs all non-isomorphic nan-
otubes (thus also the ones which are isomorphic as infinite half-tubes). By using this
modified version of the generator, we were able to generate all IPR (6,5) kernels. The
largest one has 73 vertices, so an IPR fullerene which contains a (6,5) cap and has no
removable (6,5) hexagon rings has at most 2 · 73 + 2 · (6 + 5) = 168 vertices. The
2 ·(6+5) represents a ring of hexagons, since the fullerene consisting of 2 IPR kernels
may not be IPR.

Using the corrected version of fullgen [7], we determined all IPR fullerenes up
to 168 vertices which have a (6,5) boundary and do not have any removable (6,5)
hexagon rings. There are 11 such fullerenes and each of them is reducible to a smaller
IPR fullerene. The largest one has 106 vertices. These results have been independently
confirmed by buckygen [9] using a filter and look-aheads for IPR fullerenes. All of the
dual (6,5) caps in these 11 dual IPR fullerenes contain a connected subgraph with six
5-vertices which is isomorphic to a subgraph of the distorted star-cluster.

Consider the directed edge (a, b) from the distorted star-cluster from Fig. 8. If a
ring of 6-vertices is added to a dual (6,5) cap which contains (a, b), the straight path
starting from (a, b) still exits the cap at the same relative position in the larger dual
cap. Consider a dual IPR fullerene F which has a (6,5) boundary. If there is an L or
B-reduction which starts from (a, b) and where the second 5-vertex of the reduction
is part of the other dual cap of F , then the dual fullerene F ′ obtained by adding a (6,5)
ring of 6-vertices to F is still reducible by the same reduction (but which now has
one additional 6-vertex). So if the reduction in F was an Lx reduction, it will be an
Lx+1 reduction in F ′. (Note that a reduction where a is one of the 5-vertices involved
in the reduction and where b is part of the reduction path can only produce a smaller
dual IPR fullerene if vertex c (from Fig. 8) is the 6-vertex which is transformed into
a 5-vertex by the reduction.)

We then added (6,5) rings of 6-vertices to these 11 dual fullerenes which have a
(6,5) boundary and do not have any removable (6,5) rings of 6-vertices. When 5 rings
of 6-vertices have been added, there is a reduction from (a, b) to the other dual cap in
each of the 11 cases. So all dual fullerenes of these 11 types with at least 5 (6,5) rings
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of 6-vertices are reducible to a smaller dual IPR fullerene. We also verified that each
of these 11 types of dual fullerenes with less than 5 rings of 6-vertices are reducible
as well.

This gives us the following corollary:

Corollary 13 Every dual IPR fullerene which contains a (6,5) boundary is reducible
to a smaller dual IPR fullerene.

There is a dual (6,5) kernel which is a subgraph of the distorted star-cluster. So if a
dual fullerene contains a distorted star-cluster, it also has a dual (6,5) kernel and thus
also a (6,5) boundary. This gives us:

Corollary 14 Every dual IPR fullerene which contains a distorted star-cluster is
reducible to a smaller dual IPR fullerene.

The remaining four locally irreducible 6-clusters are depicted in Fig. 9. We call
them clusters I, II, III and IV respectively. Dual caps which contain cluster I, II, III or
IV as a subgraph have boundary parameters (5,5), (8,2), (9,0) and (10,0) respectively.

By checking all possible reductions which involve a 5-vertex which is part of one
of these four clusters, it can be seen that dual IPR fullerenes which contain one of
these clusters do not have a reduction to a smaller dual IPR fullerene where at least
one of the 5-vertices involved in the reduction is in one of these four clusters. We call
clusters with this property globally irreducible. This gives us:

Corollary 15 Every dual IPR fullerene which contains two 6-clusters c and d with
c, d ∈ {I, I I, I I I, I V } is not reducible to a smaller dual IPR fullerene.

Also note that dual caps which contain a connected subgraph of six 5-vertices
which is isomorphic to a subgraph of a cluster c ∈ {I, I I, I I I, I V } have different
boundary parameters for each different c. Therefore dual IPR fullerenes which contain
two 6-clusters c and d with c ∈ {I, I I, I I I, I V } and d ∈ {I, I I, I I I, I V } \ {c} do
not exist.

All dual caps which contain a connected subgraph with six 5-vertices which is
isomorphic to a subgraph of cluster I-IV are globally irreducible as well. So all IPR
fullerenes which can be decomposed into 2 caps where both caps are globally irre-
ducible are not reducible to a smaller IPR fullerene.

By using the generator for caps from Brinkmann et al. [13], we were able to deter-
mine that all dual IPR caps with boundary parameters (5,5) (respectively (8,2) and
(9,0)) contain a connected subgraph with six 5-vertices which is isomorphic to a
subgraph of cluster I (respectively II and III). However there are caps with bound-
ary parameters (10,0) which do not contain a connected subgraph with six 5-vertices
which is isomorphic to a subgraph of cluster IV. This gives us the following corollary:

Corollary 16 Every IPR fullerene which contains a (5,5), (8,2) or (9,0) boundary is
not reducible to a smaller IPR fullerene.

We will now show that all dual IPR fullerenes which have a (10,0) boundary are
reducible, except for dual fullerenes where both caps contain a connected subgraph
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(a) (b)

(c) (d)

Fig. 9 Four irreducible 6-clusters. a Cluster I. b Cluster II. c Cluster III. d Custer IV

with six 5-vertices which is isomorphic to a subgraph of cluster IV and for a limited
number of dual fullerenes which contain an irreducible 12-cluster.

By using the modified version of the generator for caps from Brinkmann et al. [13],
we were able to generate all IPR (10,0) kernels. The largest one has 60 vertices, so an
IPR fullerene which contains a (10,0) cap and has no reducible (10,0) hexagon rings
has at most 2 · 60 + 2 · 10 = 140 vertices. Using fullgen we determined all of these
fullerenes. These results were also independently confirmed by buckygen.

All of these dual IPR fullerenes are reducible, except the ones where both dual caps
contain a connected subgraph with six 5-vertices isomorphic to a subgraph of cluster
IV and a limited number of dual fullerenes which contain a 12-cluster. In Sect. 3.3 we
will show which dual fullerenes containing a 12-cluster are irreducible.

We verified that for each of these reducible IPR fullerenes F there is an r such that
the fullerenes obtained by adding r (10, 0) rings of hexagons to F have a reduction
which is entirely within one cap. We also verified that all fullerenes obtained from F
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by adding less than r (10, 0) rings of hexagons are reducible as well. The irreducible
dual IPR fullerenes which contain a 12-cluster where the dual caps do not contain a
connected subgraph with six 5-vertices which is isomorphic to a subgraph of cluster
IV also become reducible if a (10, 0) ring of 6-vertices is added. Also for these dual
fullerenes there is an r such that the dual fullerenes obtained by adding r (10, 0) rings
of 6-vertices have a reduction which is entirely within one dual cap (and all of these
dual fullerenes obtained by adding less than r (10, 0) rings of 6-vertices are reducible
as well).

This gives us the following corollary:

Corollary 17 Every dual IPR fullerene which contains a (10,0) boundary is reducible
to a smaller dual IPR fullerene, except for dual fullerenes where both dual caps contain
a connected subgraph with six 5-vertices which is isomorphic to a subgraph of cluster
IV, and for a limited number of dual fullerenes which contain an irreducible 12-cluster.

Together with the other corollaries from this section, this gives us:

Corollary 18 All dual IPR fullerenes which contain a 6-cluster are reducible to a
smaller dual IPR fullerene, unless the dual fullerene contains 2 clusters c with c ∈
{I, I I, I I I, I V }

3.3 Reducibility of k-clusters (7 ≤ k ≤ 12)

Now we will prove that all dual IPR fullerenes which contain a k-cluster with 7 ≤
k ≤ 11 are reducible to a smaller dual IPR fullerene. We will also prove that there
are only a limited number of dual fullerenes which contain a 12-cluster which are not
reducible to a smaller dual IPR fullerene and determine them.

For a given patch with k pentagons (7 ≤ k ≤ 12), we can compute an upper bound
for the number of vertices of a fullerene which contains this patch by using the results
from [2]. Suppose for example that we have a patch P with 7 pentagons, h P hexagons
and boundary length l. We can determine an upper bound for the number of hexagons
h in a patch with the same boundary length and 5 pentagons by using Theorem 12
of [2] as follows:

l + 1

2
≥

⌈√

2h + 113

4
+ 1

2

⌉

l

2
≥

√

2h + 113

4

h ≤ l2 − 113

8

So the number of faces in a fullerene containing P is at most 7+ h P + 5+ l2−113
8 .

For patches with k (8 ≤ k ≤ 12) pentagons, an upper bound for the number of faces of
a fullerene which contains such a patch is obtained in a similar way. Based on this, we
computed an upper bound for the number of vertices of a fullerene containing the dual
of a k-cluster (7 ≤ k ≤ 12) (see [14] for details). The results are shown in Table 1.
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Table 1 Upper bound for the
number of vertices of a fullerene
containing the dual of a k-cluster

k Max. nv

7 462

8 330

9 296

10 286

11 286

12 292

Note that these upper bounds are very coarse since the patches with the largest
number of hexagons given in [2] for a given number of pentagons and boundary
length are not IPR if the patch contains at least 2 pentagons.

Using fullgen we generated all IPR fullerenes up to 330 vertices and tested them for
reducibility. This was independently verified by buckygen. We obtained the following
results:

Observation 19 All dual IPR fullerenes which contain a k-cluster (8 ≤ k ≤ 11) are
reducible to a smaller dual IPR fullerene.

Observation 20 There are exactly 56 irreducible dual IPR fullerenes which contain
a 12-cluster. The largest one has 58 vertices or 2 · (58 − 2) = 112 faces.

Observation 21 There are exactly 36 irreducible dual IPR fullerenes which contain
a 12-cluster and which do not have a dual cap which contains a connected subgraph
with six 5-vertices which is isomorphic to a subgraph of cluster I, II, III or IV.

It was not feasible to generate all IPR fullerenes up to 462 vertices with fullgen.
However, our generator for locally irreducible clusters was still fast enough to generate
all locally irreducible 7-clusters. By using these specific 7-clusters C which have

boundary length bC in the formula |V (C)| + 5 + b2C −113
8 (where |V (C)| stands for

the number of vertices of C), we were able to determine that fullerenes which contain
the dual of one of these locally irreducible 7-clusters have at most 166 vertices. Using
fullgen we generated all these fullerenes and tested them for reducibility. We obtained
the following result (which was independently confirmed by buckygen):

Corollary 22 All dual IPR fullerenes which contain a 7-cluster are reducible to a
smaller dual IPR fullerene.

Actually we only had to prove that dual IPR fullerenes which contain one 7-cluster
and five 1-clusters (or one 8-cluster and four 1-clusters etc.) are reducible. Since e.g.
a dual fullerene consisting of a 7-cluster and a 5-cluster is always reducible since all
5-clusters are locally reducible (see Observation 7).

By noting that in a dual IPR fullerene every 5-vertex is part of a cluster, together
Corollaries 6, 7, 10, 18, 19, 21 and 22 lead to the following theorem:

Theorem 23 The class of irreducible dual IPR fullerenes consists of 4 infinite families
of dual IPR fullerenes which contain two 6-clusters c with c ∈ {I, I I, I I I, I V } and
36 dual IPR fullerenes which contain a 12-cluster.
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3.4 Open questions

When classifying these irreducible IPR fullerenes we encountered some open ques-
tions. Future work might include solving these open questions:

– Can every fullerene be split into two caps? By performing a computer search, we
verified that all fullerenes up to 200 vertices can be split into two caps.

– Does a 12-cluster uniquely determine a dual fullerene? Or equivalently: does a
boundary sequence uniquely describe the interior of a subpatch of a fullerene
which only consists of hexagons?
It is known [6,16] that the boundary of a hexagon patch determines the number of
faces of the patch. It is also known that the boundary sequence uniquely describes
the interior of a hexagonal patch if it is a subgraph of the hexagonal lattice and it has
been shown by Guo et al. [16] that this is not the case if the patch is not necessarily
a subgraph of the hexagon lattice. For hexagon patches which are subgraphs of
fullerenes, it is unknown.

4 Generation algorithm

In order to generate all IPR fullerenes with n vertices, the generation algorithm recur-
sively applies the IPR construction operations from Sect. 2 to all irreducible IPR
fullerenes with at most n vertices.

The 4 infinity families of irreducible dual IPR nanotube fullerenes which contain
two 6-clusters c with c ∈ {I, I I, I I I, I V } consist of dual caps with boundary parame-
ters (5, 5), (8, 2), (9, 0) or (10, 0), respectively. They are generated by adding rings
of 6-vertices with the respective parameters in all possible ways. Since there are only a
small number of irreducible IPR fullerenes (see Sect. 5), we use the following simple
method to make sure no isomorphic irreducible IPR fullerenes are output: we compute
and store a canonical form for each generated irreducible IPR nanotube fullerene and
only output the irreducible fullerenes which were not generated before. For details
about the canonical form, we refer to [12].

To make sure that no isomorphic reducible IPR fullerenes are output, we use the
canonical construction path method [23]. The isomorphism rejection method is very
similar to the method used in [9] and therefore we refer to that article for more details
and a proof that exactly one representative of each isomorphism class of dual IPR
fullerenes is output.

5 Testing and results

We implemented our algorithm for the recursive generation of IPR fullerenes and
incorporated it in the program buckygen [9] which can be downloaded from [8]. Buck-
ygen is also part of theCaGe software package [5].Buckygen can be used to recursively
generate IPR fullerenes by executing it with the command line argument -I. We will
refer to this program as buckygen IPR.
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Table 2 Running times and generation rates for IPR fullerenes

Number
of vertices

Time (s)
(bg IPR)

Fullerenes/s
(bg IPR)

fg IPR (s) / bg
IPR (s)

fg IPR (s) / bg
IPR filter (s)

bg IPR filter
(s) / bg IPR (s)

200 4110 3809 1.88 0.80 2.34

230 22481 3836 2.14 0.96 2.23

260 104,831 3456 2.18 1.03 2.21

280 274,748 3066 2.19 1.10 2.00

300 678,331 2686 2.19 1.16 1.88

320 1,591,041 2329 1.99 1.14 1.75

340 3,613,915 1981 1.73 1.09 1.60

360 8,135,063 1625 1.51 1.05 1.43

0–140 17.5 33,055 19.62 1.99 9.85

200–250 79,152 28,321 14.37 6.66 2.16

290–300 776,910 11,753 7.83 4.11 1.91

Bg stands for buckygen and fg stands for fullgen

Buckygen can also be used to generate IPR fullerenes by generating all fullerenes
and using a filter and look-aheads for IPR fullerenes. We will refer to this generator
as buckygen IPR filter.

A comparison of the running times for generating IPR fullerenes is given in Table 2.
The programs were compiled with gcc and executed on an Intel Xeon L5520 CPU at
2.27GHz. The running times include writing the IPR fullerenes to a null device.

As can be seen from that table, buckygen IPR is significantly faster than full-
gen [7]. Buckygen constructs larger fullerenes from smaller ones. So generating all
IPR fullerenes with at most n vertices gives only a small overhead compared to gener-
ating all IPR fullerenes with exactly n vertices. In fullgen the overhead is considerably
larger as it does not construct fullerenes from smaller fullerenes.

The speedupofbuckygen IPR compared tobuckygen IPR filter is decreasingbecause
in buckygen IPR filter several lemmas can be applied which allow to determine a good
bound on the length of the shortest reduction (see [9]), while these cannot be applied to
buckygen IPR. Furthermore the ratio of IPR fullerenes among all fullerenes is increas-
ing, thus the ratio of fullerenes which are rejected by buckygen IPR filter because they
are not IPR is decreasing. However for the fullerene sizes which are important for
practical purposes, buckygen IPR is significantly faster than other generators for IPR
fullerenes.

We used buckygen IPR to generate all IPR fullerenes up to 400 vertices. These
results were independently confirmed by buckygen IPR filter and fullgen IPR up to
380 vertices.

The counts of all fullerenes, irreducible IPR fullerenes and IPR fullerenes up to
400 vertices can be found in Table 3. Some of these graphs can be downloaded from
the House of Graphs [4] at http://hog.grinvin.org/Fullerenes.
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Table 3 Counts of all fullerenes, irreducible IPR fullerenes and IPR fullerenes

Nv Nf Fullerenes Irred. IPR fullerenes IPR fullerenes

20 12 1 0 0

22 13 0 0 0

24 14 1 0 0

26 15 1 0 0

28 16 2 0 0

30 17 3 0 0

32 18 6 0 0

34 19 6 0 0

36 20 15 0 0

38 21 17 0 0

40 22 40 0 0

42 23 45 0 0

44 24 89 0 0

46 25 116 0 0

48 26 199 0 0

50 27 271 0 0

52 28 437 0 0

54 29 580 0 0

56 30 924 0 0

58 31 1205 0 0

60 32 1812 1 1

62 33 2385 0 0

64 34 3465 0 0

66 35 4478 0 0

68 36 6332 0 0

70 37 8149 1 1

72 38 11190 1 1

74 39 14,246 1 1

76 40 19,151 2 2

78 41 24,109 4 5

80 42 31,924 7 7

82 43 39,718 8 9

84 44 51,592 11 24

86 45 63,761 1 19

88 46 81,738 3 35

90 47 99,918 2 46

92 48 126,409 3 86

94 49 153,493 0 134

96 50 191,839 4 187

98 51 231,017 1 259
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Table 3 continued

Nv Nf Fullerenes Irred. IPR fullerenes IPR fullerenes

100 52 285,914 3 450

102 53 341,658 0 616

104 54 419,013 1 823

106 55 497,529 0 1233

108 56 604,217 2 1799

110 57 713,319 1 2355

112 58 860,161 2 3342

114 59 1,008,444 2 4468

116 60 1,207,119 1 6063

118 61 1,408,553 0 8148

120 62 1,674,171 4 10,774

122 63 1,942,929 0 13,977

124 64 2,295,721 1 18,769

126 65 2,650,866 0 23,589

128 66 3,114,236 1 30,683

130 67 3,580,637 1 39,393

132 68 4,182,071 3 49,878

134 69 4,787,715 0 62,372

136 70 5,566,949 1 79,362

138 71 6,344,698 0 98,541

140 72 7,341,204 3 121,354

142 73 8,339,033 0 151,201

144 74 9,604,411 1 186,611

146 75 10,867,631 0 225,245

148 76 12,469,092 1 277,930

150 77 14,059,174 3 335,569

152 78 16,066,025 1 404,667

154 79 18,060,979 0 489,646

156 80 20,558,767 1 586,264

158 81 23,037,594 0 697,720

160 82 26,142,839 4 836,497

162 83 29,202,543 0 989,495

164 84 33,022,573 1 1,170,157

166 85 36,798,433 0 1,382,953

168 86 41,478,344 3 1,628,029

170 87 46,088,157 1 1,902,265

172 88 51,809,031 1 2,234,133

174 89 57,417,264 0 2,601,868

176 90 64,353,269 1 3,024,383
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Table 3 continued

Nv Nf Fullerenes Irred. IPR fullerenes IPR fullerenes

178 91 71,163,452 0 3,516,365

180 92 79,538,751 3 4,071,832

182 93 87,738,311 0 4,690,880

184 94 97,841,183 1 5,424,777

186 95 107,679,717 2 6,229,550

188 96 119,761,075 1 7,144,091

190 97 131,561,744 1 8,187,581

192 98 145,976,674 1 9,364,975

194 99 159,999,462 0 10,659,863

196 100 177,175,687 1 12,163,298

198 101 193,814,658 0 13,809,901

200 102 214,127,742 4 15,655,672

202 103 233,846,463 0 17,749,388

204 104 257,815,889 3 20,070,486

206 105 281,006,325 0 22,606,939

208 106 309,273,526 1 25,536,557

210 107 336,500,830 1 28,700,677

212 108 369,580,714 1 32,230,861

214 109 401,535,955 0 36,173,081

216 110 440,216,206 1 40,536,922

218 111 477,420,176 0 45,278,722

220 112 522,599,564 3 50,651,799

222 113 565,900,181 2 56,463,948

224 114 618,309,598 1 62,887,775

226 115 668,662,698 0 69,995,887

228 116 729,414,880 1 77,831,323

230 117 787,556,069 1 86,238,206

232 118 857,934,016 1 95,758,929

234 119 925,042,498 0 105,965,373

236 120 1,006,016,526 1 117,166,528

238 121 1,083,451,816 0 129,476,607

240 122 1,176,632,247 6 142,960,479

242 123 1,265,323,971 0 157,402,781

244 124 1,372,440,782 1 173,577,766

246 125 1,474,111,053 0 190,809,628

248 126 1,596,482,232 1 209,715,141

250 127 1,712,934,069 1 230,272,559

252 128 1,852,762,875 1 252,745,513
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Table 3 continued

Nv Nf Fullerenes Irred. IPR fullerenes IPR fullerenes

254 129 1,985,250,572 0 276,599,787

256 130 2,144,943,655 1 303,235,792

258 131 2,295,793,276 2 331,516,984

260 132 2,477,017,558 3 362,302,637

262 133 2,648,697,036 0 395,600,325

264 134 2,854,536,850 1 431,894,257

266 135 3,048,609,900 0 470,256,444

268 136 3,282,202,941 1 512,858,451

270 137 3,501,931,260 1 557,745,670

272 138 3,765,465,341 1 606,668,511

274 139 4,014,007,928 0 659,140,287

276 140 4,311,652,376 3 716,217,922

278 141 4,591,045,471 0 776,165,188

280 142 4,926,987,377 4 842,498,881

282 143 5,241,548,270 0 912,274,540

284 144 5,618,445,787 1 987,874,095

286 145 5,972,426,835 0 1,068,507,788

288 146 6,395,981,131 1 1,156,161,307

290 147 6,791,769,082 1 1,247,686,189

292 148 7,267,283,603 1 1,348,832,364

294 149 7,710,782,991 2 1,454,359,806

296 150 8,241,719,706 1 1,568,768,524

298 151 8,738,236,515 0 1,690,214,836

300 152 9,332,065,811 3 1,821,766,896

302 153 9,884,604,767 0 1,958,581,588

304 154 10,548,218,751 1 2,109,271,290

306 155 11,164,542,762 0 2,266,138,871

308 156 11,902,015,724 1 2,435,848,971

310 157 12,588,998,862 1 2,614,544,391

312 158 13,410,330,482 3 2,808,510,141

314 159 14,171,344,797 0 3,009,120,113

316 160 15,085,164,571 1 3,229,731,630

318 161 15,930,619,304 0 3,458,148,016

320 162 16,942,010,457 4 3,704,939,275

322 163 17,880,232,383 0 3,964,153,268

324 164 19,002,055,537 1 4,244,706,701

326 165 20,037,346,408 0 4,533,465,777

328 166 21,280,571,390 1 4,850,870,260

330 167 22,426,253,115 3 5,178,120,469
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Table 3 continued

Nv Nf Fullerenes Irred. IPR fullerenes IPR fullerenes

332 168 23,796,620,378 1 5,531,727,283

334 169 25,063,227,406 0 5,900,369,830

336 170 26,577,912,084 1 6,299,880,577

338 171 27,970,034,826 0 6,709,574,675

340 172 29,642,262,229 3 7,158,963,073

342 173 31,177,474,996 0 7,620,446,934

344 174 33,014,225,318 1 8,118,481,242

346 175 34,705,254,287 0 8,636,262,789

348 176 36,728,266,430 3 9,196,920,285

350 177 38,580,626,759 1 9,768,511,147

352 178 40,806,395,661 1 10,396,040,696

354 179 42,842,199,753 0 11,037,658,075

356 180 45,278,616,586 1 11,730,538,496

358 181 47,513,679,057 0 12,446,446,419

360 182 50,189,039,868 4 13,221,751,502

362 183 52,628,839,448 0 14,010,515,381

364 184 55,562,506,886 1 14,874,753,568

366 185 58,236,270,451 2 15,754,940,959

368 186 61,437,700,788 1 16,705,334,454

370 187 64,363,670,678 1 17,683,643,273

372 188 67,868,149,215 1 18,744,292,915

374 189 71,052,718,441 0 19,816,289,281

376 190 74,884,539,987 1 20,992,425,825

378 191 78,364,039,771 0 22,186,413,139

380 192 82,532,990,559 3 23,475,079,272

382 193 86,329,680,991 0 24,795,898,388

384 194 90,881,152,117 3 26,227,197,453

386 195 95,001,297,565 0 27,670,862,550

388 196 99,963,147,805 1 29,254,036,711

390 197 104,453,597,992 1 30,852,950,986

392 198 109,837,310,021 1 32,581,366,295

394 199 114,722,988,623 0 34,345,173,894

396 200 120,585,261,143 1 36,259,212,641

398 201 125,873,325,588 0 38,179,777,473

400 202 132,247,999,328 4 40,286,153,024

Nv is the number of vertices and nf is the number of faces
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